Краткое содержание работы
Біполярний транзистор — напівпровідниковий елемент електронних схем, із трьома електродами, один з яких служить для керування струмом між двома іншими. Термін "біполярний" підкреслює той факт, що принцип роботи приладу полягає у взаємодії з електричним полем часток, що мають як позитивний, так і негативний заряд.
Транзистори класифікуються за вихідним матеріалом, розсіюванню потужністю, діапазоном робочих частот, принципом дії. В залежності від вихідного матеріалу їх поділяють на дві групи: германієві та кремнієві. За діапазоном робочих частот їх ділять на транзистори низьких, середніх і високих частот, за потужністю — на класи транзисторів малої, середньої та великої потужності. Транзистори малої потужності ділять на шість груп: підсилювачі низьких і високих частот, малошумні підсилювачі, перемикачі насичені, ненасичені та малого струму; транзистори великої потужності — на три групи: підсилювачі, генератори, перемикачі. За технологічними ознаками розрізняють сплавні, сплавно-дифузійні, дифузійно-сплавні, конверсійні, епітаксіальні, планарні, епітаксіально-планарні транзистори.
Винахід відноситься до мікроелектроніки, а саме до технології виготовлення ІС високого ступеня інтеграції на біполярних транзисторах з використанням методів самозміщеної технології (ССТ). Метод самозміщеної технології (Gigabit Logio Bipolar Technology advanced super sela-aligned Process Technology) [1] дозволяє істотно зменшити відстань між електродами до бази та емітер і в цілому розмір транзистора. Разом з тим розмір емітера в цьому методі визначається мінімальним розміром на літографії, незначно зменшуючись на товщину бічного діелектрика на стінках вікна, не дозволяючи отримувати субмікронними розміри емітера. Найбільш близьким технічним рішенням до пропонованого є спосіб виготовлення транзистора (Utilizinc Polysilicon Diffusion sources and special maskinc Techniques) [2], який включає формування в кремнієвої підкладці першого типу провідності прихованих шарів другого типу провідності, формування областей ізоляції і глибокого колектора, формування на поверхні першого плівки діелектрика, витравлювання в діелектрику ока під базу, формування перших плівки полікремнія, легованої домішкою першого типу провідності, формування покриття, що включає другого діелектричну плівку і плівку оксиду металу як маски для травлення, розтин у другій діелектричної плівці вікон під емітерний області транзисторів, витравлювання у вікнах під емітерний області полікремнія, легування кремнію домішкою першого типу провідності, формування третього плівки діелектрика, ізолюючої торці перший плівки полікремнія у вікнах під емітерний області, формування другої плівки полікремнія, легованої домішкою другу типу провідності, осадження фінальної плівки діелектрика, формування пасивних і активних базових областей і емітерний області, створення контактів до них і металізації.
Недоліком процесу виготовлення транзистора є неможливість отримання субмікронних розмірів емітера, менших за розміром мінімального розміру на літографії. Як відомо, підвищення швидкодії ІС досягається за рахунок зниження ємностей і зарядних опорів в транзисторі, цілком визначаючись шириною вікна, розкриваємо під емітер. Сучасні методи літографії дозволяють отримувати мінімальні розміри 0,8 - 1,2 мкм, а з використанням вдосконалених методів - 0,5 мкм і навіть 0,25 мкм. Однак все це потребує великих витрат і істотно ускладнює процес виготовлення ІС, знижує відсоток виходу придатних і не дозволяє керувати подальшим зниженням розмірів емітера. У той же час цей параметр є ключовим при створенні високошвидкісних біполярних ІС. Завданням цього винаходу є підвищення швидкодії транзистора за рахунок зменшення топологічних розмірів емітерний областей транзистора і отримання високого відсотка виходу придатних. Для досягнення зазначеного технічного результату в способі